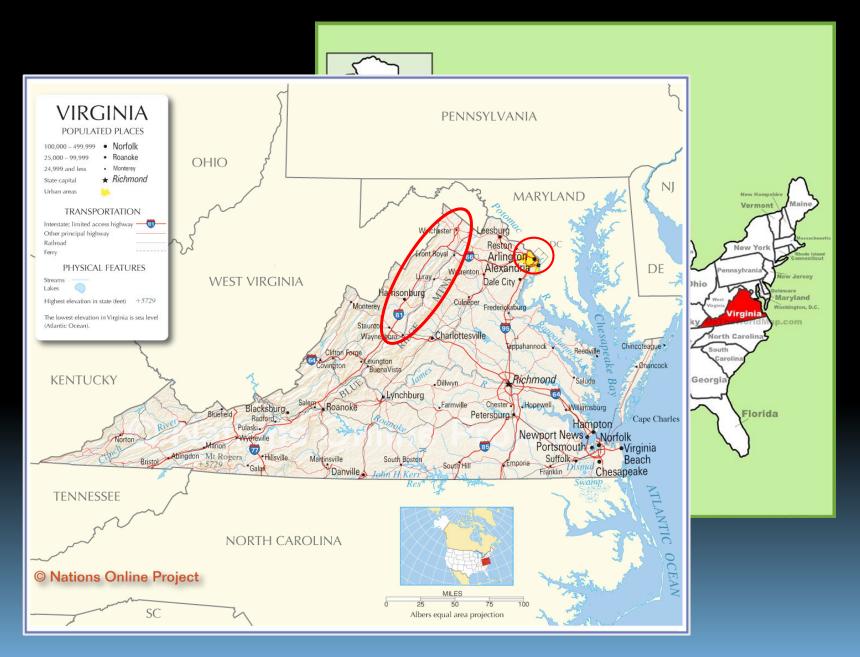
*CROWD'-SOURCING ENVIRONMENTAL PATHOGENOMICS: Enteric Pathogens and Resistance Plasmids Isolated from Stream Sediments in the Shenandoah Valley of Virginia

JAMES B. HERRICK, PH.D.


James Madison University

Harrisonburg, Virginia USA

"The future of humanity and microbes likely will unfold as episodes of a suspense thriller that could be titled 'Our Wits Versus Their Genes'."

-- Joshua Lederberg

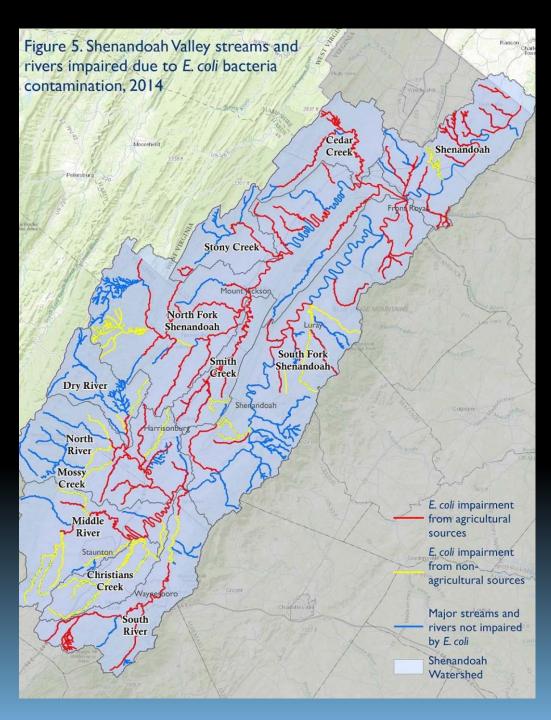
The Shenandoah Valley of Virginia

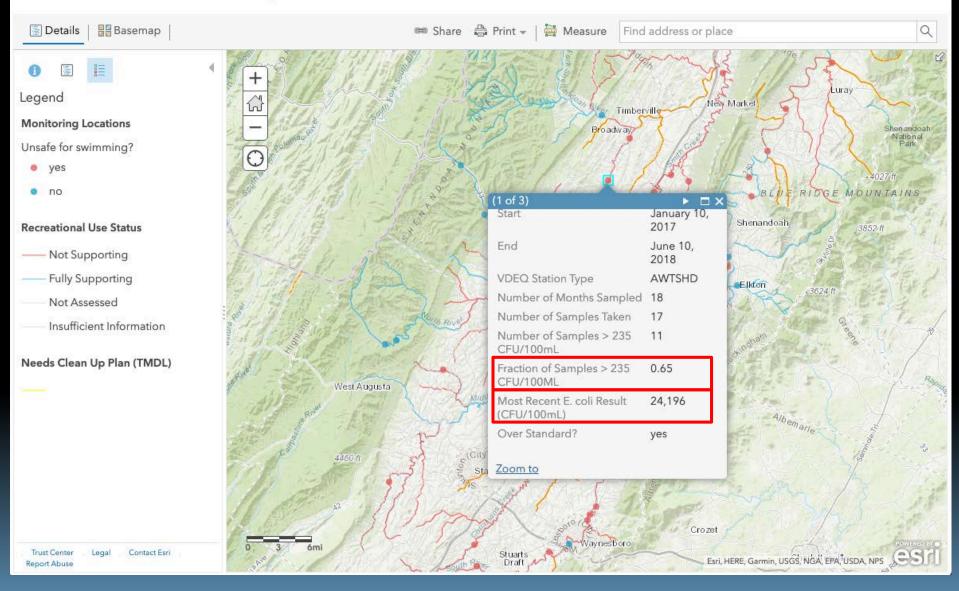
MANURE PRODUCTION IN THE SHENANDOAH VALLEY

Table A. 2012 Estimated Phosphorus Output from Poultry and Cows, Augusta, Page, Rockingham, and Shenandoah Counties

Туре	Number of Animals	Manure Output	Phosphorus (pounds)
Chickens			
Broilers	157,380,630	196,726 tons	4,485,348
Pullets	1,286,348	32,101 tons	251,545
Layers	939,008	32,560 tons	250,715
Turkeys	16,534,511	148,811 tons	3,258,961
Cows	528,943	1.28 billion gallons	5,056,038
Total	176,669,440 animals	410,198 tons and 1.28 billion gallons	13,302,607

Note: Manure generation and phosphorus content shown on a recoverable or as-is basis. Sources: USDA 2012 Agricultural Census, Virginia Department of Conservation and Recreation 2014 Nutrient Management Standards and Criteria, and the Chesapeake Bay Program. See Appendix A for methods.

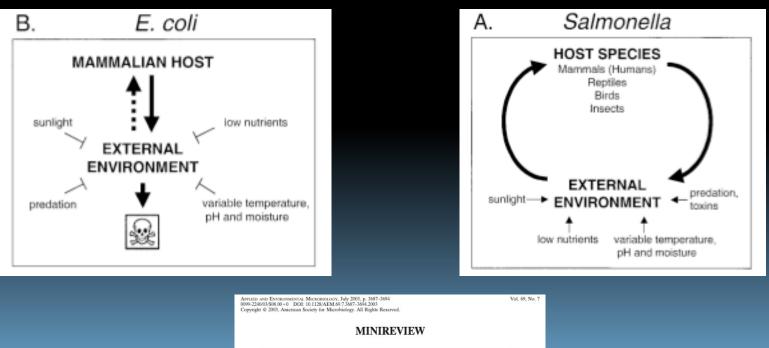

Water Pollution from Livestock in the Shenandoah Valley. April 26, 2017. Environmental Integrity Project. https://tinyurl.com/r7xed7z


Field application of poultry litter

CONTAMINATED WATERWAYS

Water Pollution from Livestock in the Shenandoah Valley. April 26, 2017. Environmental Integrity Project. https://tinyurl.com/r7xed7z

ArcGIS ♥ Shenandoah Bacteria Map



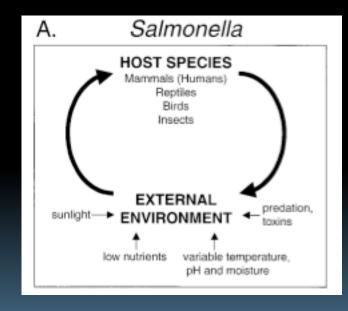
https://tinyurl.com/r6gqmd8

Are there fecal pathogens in these impacted waterways?

CONTRASTING LIFESTYLES OF SALMONELLA AND E. COLI IN AQUATIC, SOIL, AND AGRICULTURAL ENVIRONMENTS

E. coli \rightarrow negative growth rates in most secondary habitats Salmonella \rightarrow uses secondary habitats to facilitate passage to new hosts

Role of Nonhost Environments in the Lifestyles of Salmonella and Escherichia coli Mollie D. Winfield and Eduardo A. Groisman*


CONTRASTING LIFESTYLES OF SALMONELLA AND E. COLI IN AQUATIC, SOIL, AND AGRICULTURAL ENVIRONMENTS

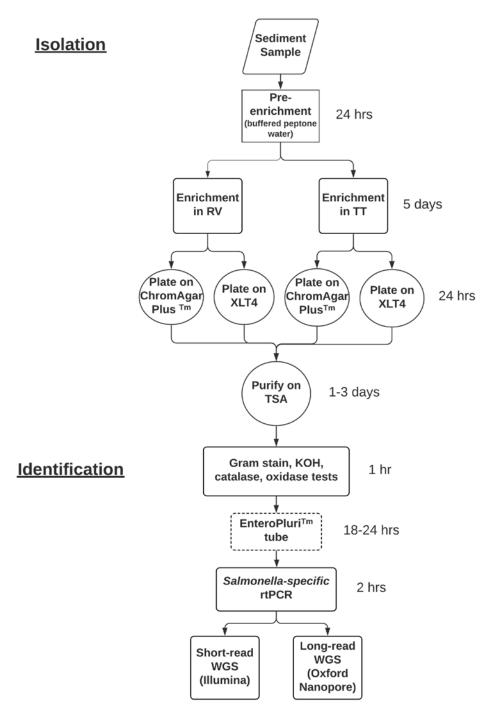
E. coli \rightarrow negative growth rates in most secondary habitats

Salmonella \rightarrow uses secondary habitats to facilitate passage to new hosts

<u>Salmonella</u>:

- Has high survival rates in aquatic systems
- Is more resistant than E. coli to environmental fluctuations
- Can persist in a poultry house for > 1 year
- Can survive and grow in soil for at least a year
- Exhibits four-fold greater adherence to sediment particles than *E. coli*

Arring and Evanovaeries Menamerica, July 2015, p. 2017-2014 Description 2010 Status - DOI: Initiation 2017-2017-2017 Capital 0 2007, America Kenther Status - Statu


Are there fecal pathogens in these impacted waterways? Can we recover them?

WHY SAMPLE SEDIMENTS?

- Total bacterial counts in sediments typically much higher than in the water column
- Salmonella and other fecal bacteria can persist in sediments
- Sediment populations may represent a more long-term reservoir

Salmonella Isolation and Identification Workflow

'Crowd'-sourcing isolation, ID, and basic genomics

SAMPLING & METADATA (EPICOLLECT5)

🔹) Bacterial Discovery Metadata -

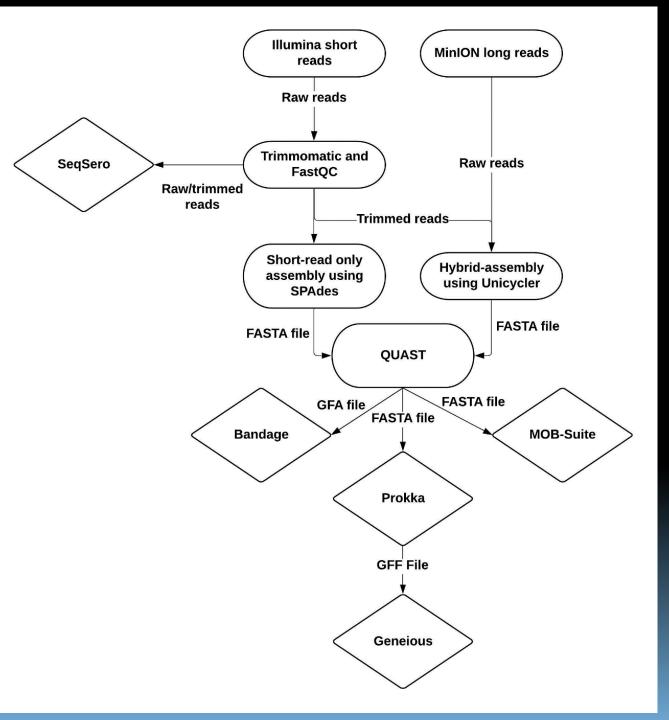
=+ Add Metadata Total: 41, 1/1 < >

S Map

() Exit

Filter by title

FROM: 22 JAN, 18 TO: 02 SEP, 19 NEWEST - X


Table

Download

/iew	Delete	Edit	Title	Created At	Enter latitude and longitude (re	Who collected this sample?	Photo of sampling site	Water Temperature (T)	Salinity
0	0	0	02/09/2019 Muddy Cr	2nd Sep, 2019	38.466871, -78.975172	Guilliams	55°	22.9	.15
0	0	0	02/09/2019 Muddy Cr	2nd Sep, 2019	38.466927, -78.97457	Emily		22.3	.26
0	0	0	02/09/2019 Muddy Cr	2nd Sep, 2019	38.466983, -78.975062	Мау		22.3	0.26
0	0	0	02/09/2019 Muddy Cr	2nd Sep, 2019	38.46693, -78.974626	Brian Swinehart		22.3	.26
0	0	0	02/09/2019 Cooks Cr	2nd Sep, 2019	38.419992, -78.939783	Bryan		20.5	.27
0	0	0	02/09/2019 Cooks Cr	2nd Sep, 2019	38.419909, -78.939513	Devan		21.6	0.33
0	0	0	02/09/2019 Other (ent	2nd Sep, 2019	38.419926, -78.939629	Guilliams	267	21.6	.33
0	0	0	02/09/2019 Cooks Cr	2nd Sep, 2019	38.419972, -78.939768	Brian Swinehart		21.4	.33
0	0	0	02/09/2019 Cooks Cr	2nd Sep, 2019	38.372947, -78.934662	May Heivilin		23.4	0.28

https://five.epicollect.net

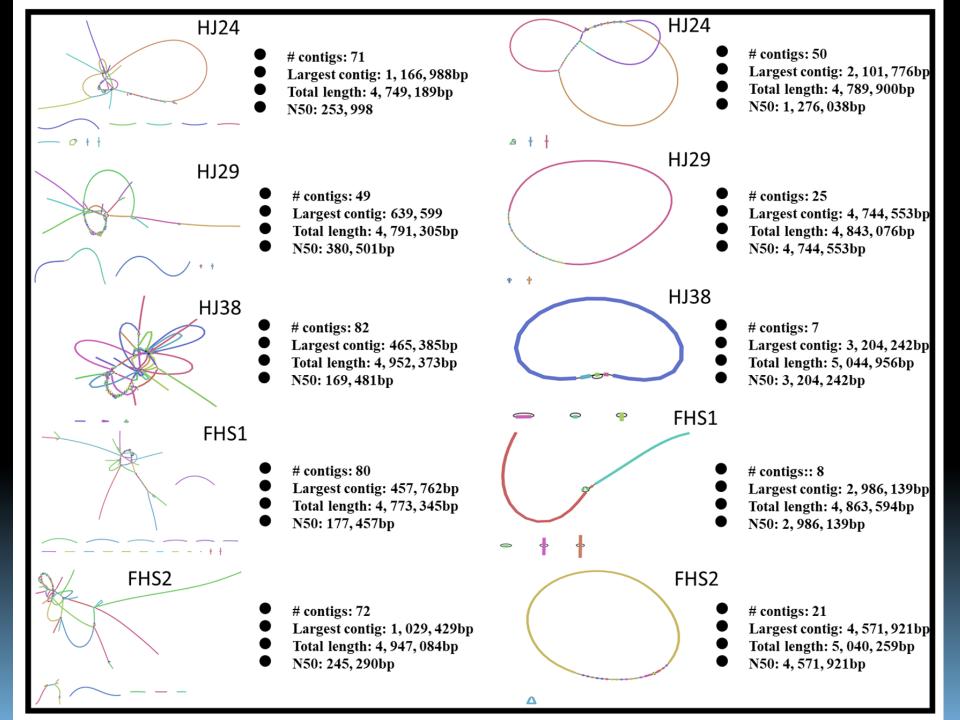
BIOINFORMATICS WORKFLOW

🗧 Galaxy / GalaxyTrakr	1905 Analyze Data Workflow Visualize * Shared Data * Help * User *	l	Using 14%
Tools 🗘 🕹		History	≎+⊡\$
search tools		search datasets	8
Get Data NGS TOOLBOX NGS: QC and manipulation	Welcome to GalaxyTrakr: open-source bioinformatics for public health. This site is intended for use by GenomeTrakr laboratories and their collaborators to assist in the analysis of genomic data for foodborne	HJ1 Sample 42 shown, 21 deleted 1.11 GB	v » •
NGS: Assembly	pathogens. This instance of Galaxy is hosted in a public environment and no personally identifiable (PII) or commercial confidential information should be	63: SeqSero Results	• # x
NGS: Screening and Prediction NGS: Mapping	uploaded.	60: SRR5886281_2	• • ×
NGS: Annotations	!!Information and Announcements!!	59: HJ01_SRR5886281_1	• / ×
NGS: CFSAN SNP Pipeline (beta) NGS: Phylogenetics	Please re-import the skesamlst workflow that was updated a few days ago. Previous versions are no longer working and are causing errors when running. Thank you.	47: staramr on data 22: res ults.xlsx	• # X
NGS: Megablast	Access CFSAN SNP Pipeline workflows in the shared workflows screen. Post in the offical Galaxy GenomeTrakr board on the Redmine Site: Click here	46: staramr on data 22: set tings.txt	• # X
Metagenomics: Metaphlan	Click here to access the GalaxyTrakr User Guide Forgot Password? Email GalaxyTrakr Support Team	45: staramr on data 22: res finder.tsv	• # ×
Metagenomics: Diamond Metagenomics: Kraken	Take an interactive tour: Galaxy UI History Scratchbook	44: staramr on data 22: su mmary.tsv	• / ×
Metagenomics: Mitokmer Metagenomics: Lefse		43: staramr on data 22: hit a list	s 🗙
Metagenomics: Graphlan Metagenomics: Functional		42: Quast: Report (PDF)	• # ×
Profiling		41: Quast: Report (HTML)	• / ×
Metagenomics: Assembly Metagenomics: AMR	Galaxy is an open platform for supporting data intensive research. Galaxy is developed by The Galaxy Team with the support of many contributors.	40: Quast: Report (tabulal)	• # ×

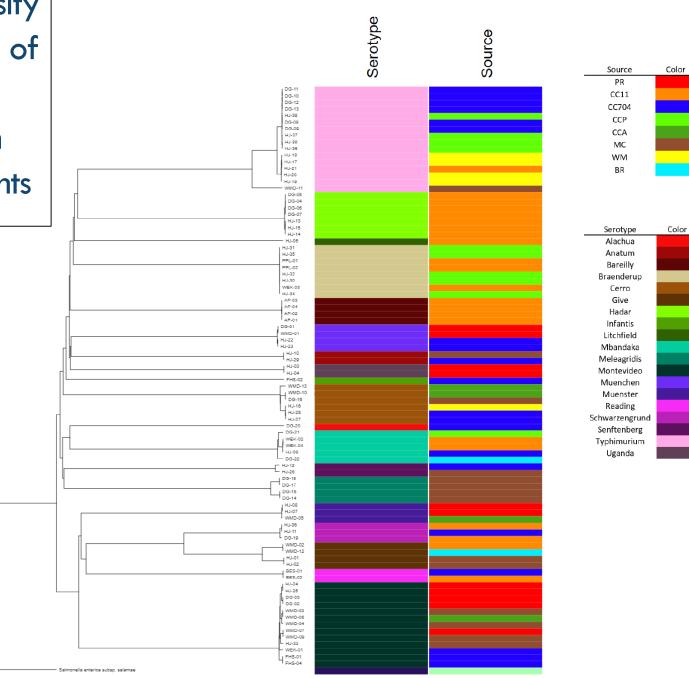
Bioinformatics Ø : œ :: BLG1a - Navigating and Using GalaxyTrakr @ : P :: BLG1b: Salmonella Serotyping @ . P BLG2a: FastQC & Trimmomatic Z : Þ BLG2b-Naming Files : P ii BLG3a: Genome Assembly @ : P BLG3b: Assessing Assembly Quality : P BLG3c: Ordering and Viewing Assembled Contigs Z : œ OSF Misc view-only link (RefSeq file) Z : æ RefSeq Salmonella Files @ Ø : P :: bacWGSTdb spreadsheet @ : æ ... BLG4: Gene Annotation 🖉 : P BLG5 : Resistance Gene Detection @

WHOLE GENOME SEQUENCING PLATFORMS

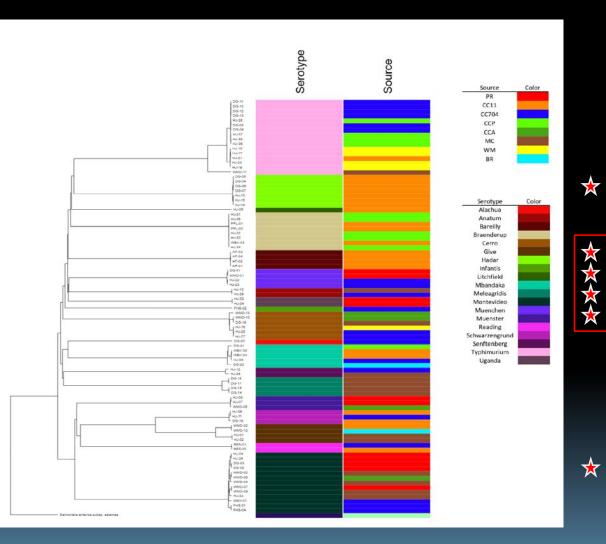
Illumina Sequencing (2nd gen)


Produces highly accurate (>99.9%), short reads (~50 - 300 bp)

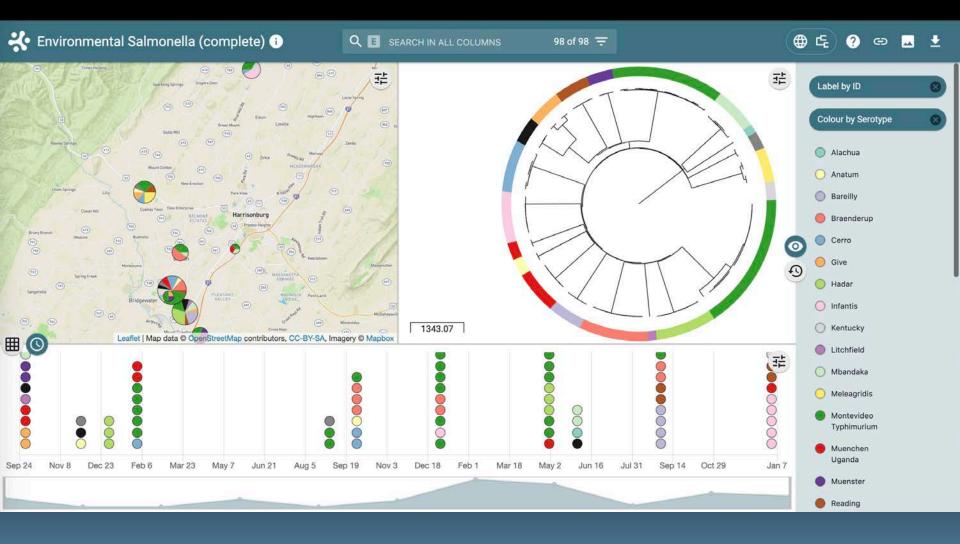
Oxford Nanopore MinION



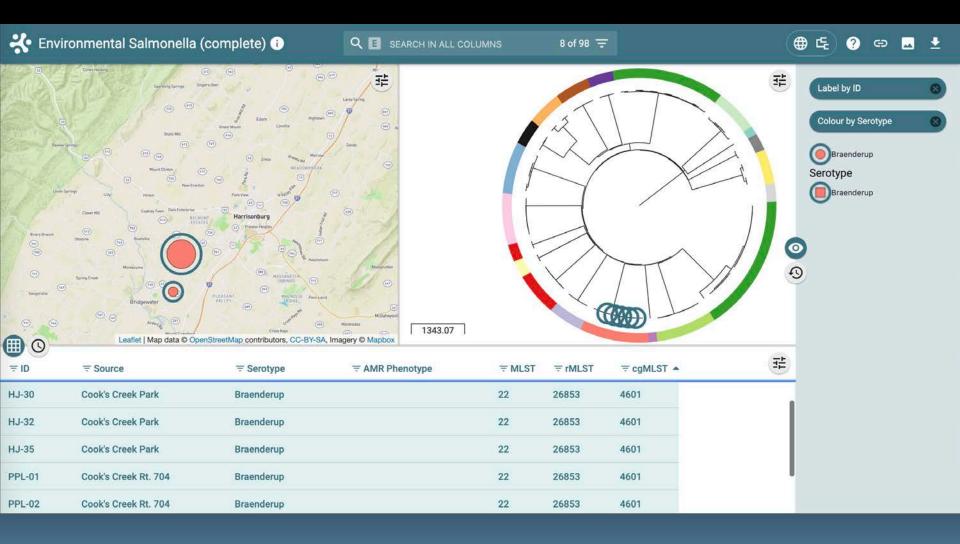
Produces lower accuracy (~85-95%), long reads (> 1kb)


Combine data for hybrid, de novo genome assembly

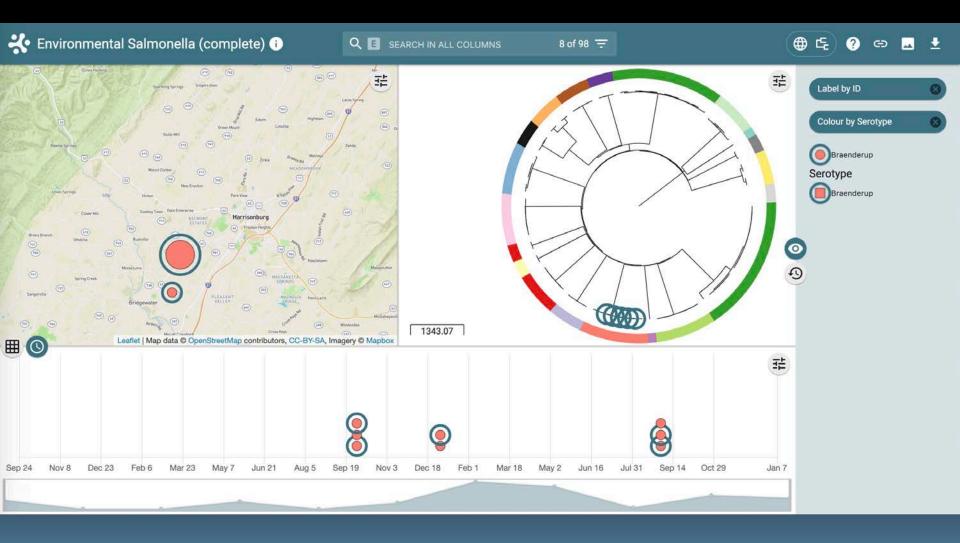
Serotype diversity and distribution of Salmonella enterica from stream sediments

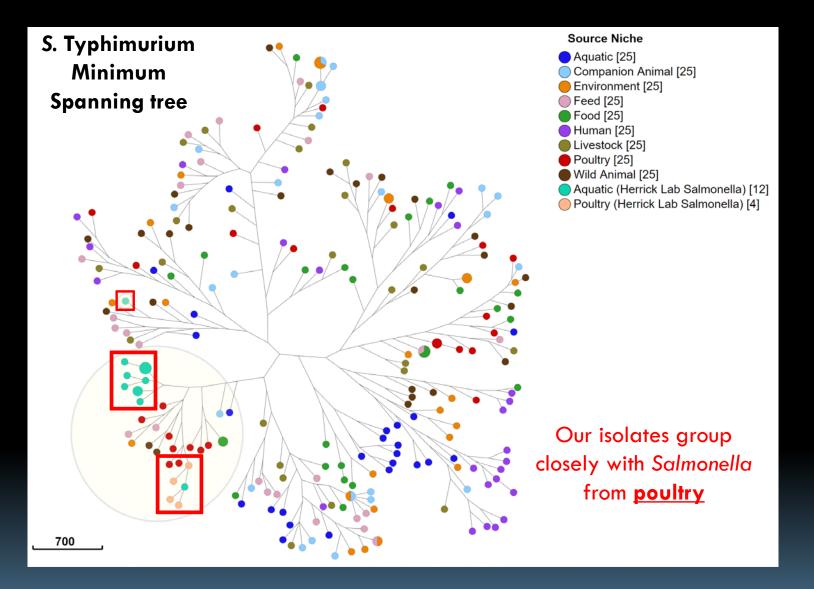

48/88 isolates are members of the top 20 human disease-causing serotypes

National Enteric Disease Surveillance: Salmonella Annual Report, 2016 (CDC)



VISUALIZATION OF ISOLATE DATA USING MICROREACT


Microreact: Argimón et al. 2016. Microbial Genomics 2(11): doi:10.1099/mgen.0.000093


Identical S. Braenderup found in across multiple locations

Enterobase: Alikhan NF, Zhou Z, Sergeant MJ, Achtman M (2018) "A genomic overview of the population structure of Salmonella." PLoS Genet 14 (4): e1007261.

Identical S. Braenderup found in across multiple locations & timepoints

Zhou Z, et al. (2018) "GrapeTree: Visualization of core genomic relationships among 100,000 bacterial pathogens", Genome Research

MOBILE GENETIC ELEMENTS (MGES)

Drug-Proof Superbug Turns Deadly

Antibiotic-resistant staph kills more Americans than AIDS

Oct 16, 2007 11:26 PM CDT

"SUPER-PLASMIDS"

Drug-resistant superbug spreading in Europe's hospitals

 By James Gallagher Health and science correspondent, BBC News

 O
 29 July 2019

 f
 Image: Constraint of the state of the state

Superbugs resistant to emergency antibiotics are spreading in hospitals, a Europe-wide study shows.

ETTY IMAGES

Source and the second sec

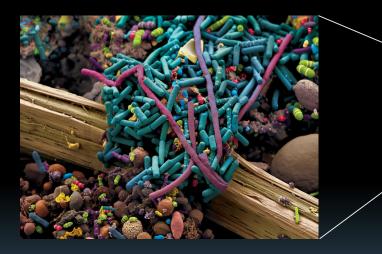
Volume 73, Issue 12 December 2018

Carriage of *bla*_{KPC-2} by a virulence plasmid in hypervirulent *Klebsiella pneumoniae*

Ning Dong, Dachuan Lin, Rong Zhang, Edward Wai-Chi Chan, Sheng Chen 🐱

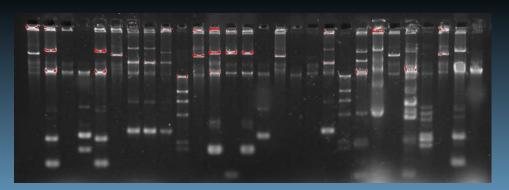
Journal of Antimicrobial Chemotherapy, Volume 73, Issue 12, December 2018, Pages 3317–3321, https://doi.org/10.1093/jac/dky358
Published: 15 September 2018 Article history ▼

Environmental reservoirs of transmissible antibiotic resistance and virulence?


Beyond the possible health implications of persistent pathogens in streams, what is the effect of having soil and stream bacteria constantly bathed in high numbers of fecal bacteria?

- Introduced l sediments
 - a may long enough for horizontal transfer (HCF), especially
- Possible "hot spots" for HGT due to:
 - Large total surface area
 - High numbers
 - High nutrient content

Potential *in situ* recombination and transmission in stream populations



- Genes, transposons, genomic islands, and other mobile genetic elements may also <u>recombine in</u> <u>situ</u> within native and introduced stream populations
- These may then be <u>transmissible to</u> and from pathogens (e.g. via plasmids)

ANTIMICROBIAL RESISTANCE GENES (ARGS) IN ISOLATED SALMONELLA PRIMARILY PLASMID-BORNE

- 84% of the ARGs in isolated Salmonella were plasmidborne*
- All the S. Typhimurium ARGs were plasmid-borne*
- Some (nearly) identical isolates differed only in whether their ARGs were on plasmids or not

*Exclusive of aac6-laa and aac6-ly, which are part of the core genome.

EXOGENOUS CAPTURE OF TRANSMISSIBLE PLASMIDS FROM STREAMS

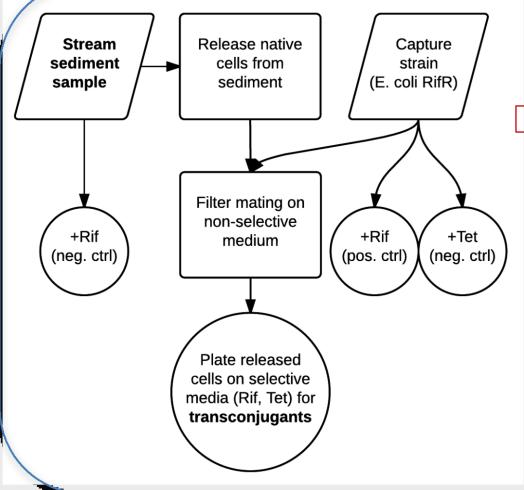
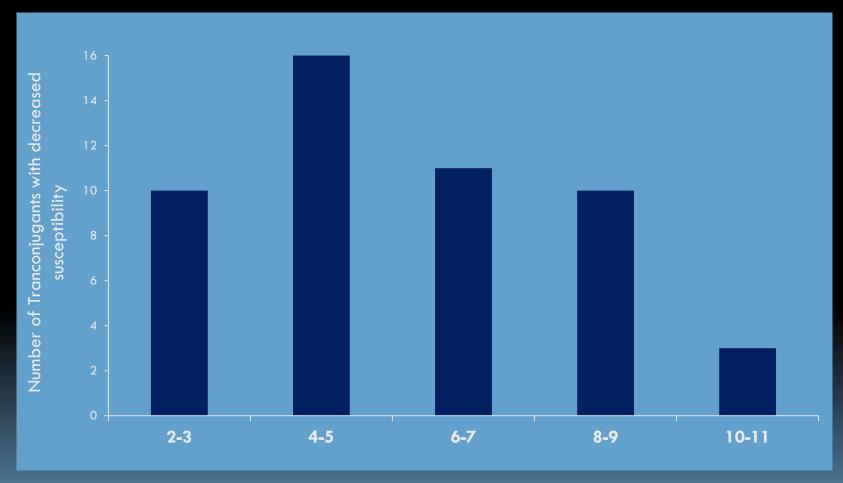
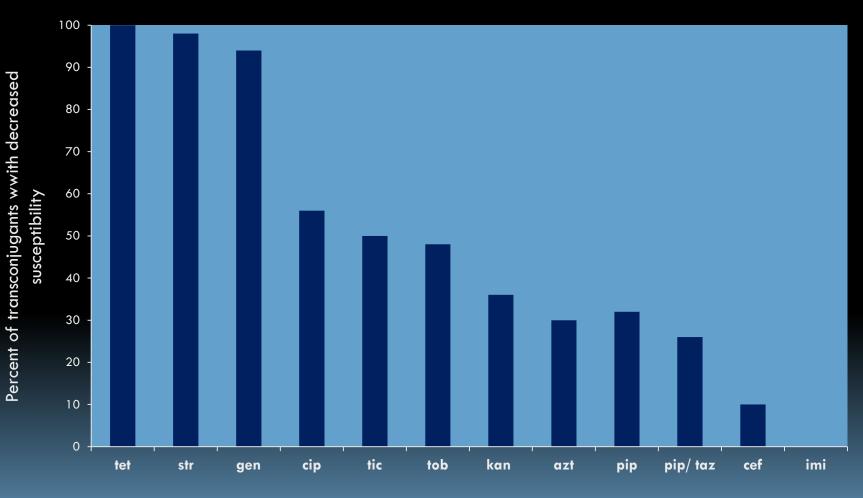



Figure 1. Exogenous capturing of tetracycline resistance plasmids from sediment. Plasmids captured from stream sediment samples by releasing native cells from sediment and conjugating with a rifampicin-resistant strain of *E. coli*. Transconjugants selected on tetracyclineand rifampicin-amended medium. Plasmids purified and electroporated into an electrocompetent *E. coli* strain and tested for decreased antibiotic susceptibility to 12 antibiotics relative to un-electroporated strain.


Plasmids captured by Pseudomonas sp. from Muddy Creek sediments conferred decreased susceptibility to multiple antibiotics (n = 50 plasmids)

Number of Antibiotics

Herrick et al. (2014) Journal of Applied Microbiology, **117**, 380-389.

Percentage of transconjugants encoding decreased susceptibility to 12 antibiotics

Antibiotic

MICs of plasmids captured from litter-amended soil and adjacent stream sediments

MIC of recipient strain

Resistance breakpoint for *P. aeruginosa*

Susceptibility breakpoint for *P. aeruginosa*

Antibiotic	Plasmid source ^a	Percentage of transconjugants with MIC (µg/mL) ^b Resistance										
	source	0.12	0.25	0.5	Kes 1	2	e 4	0	16	32	64	128
amikacin	sediment	0.12	0.25	0.5	1	2	100	0		52	04	120
amikacin	soil						94		:		6	
aztreonam	son sediment						94			100	0	
azueonam	soil								19	81		
cefepime	sediment						20	60	19	4		
cerephile	soil					13		13	63	6		
cefoperazone	sediment					15	Ŭ	15	05	24	76	
	soil								6	13	81	
cefotaxime	sediment								4	52	44	
	soil								31		69	
ceftazidime	sediment						40	60				
	soil					25			75			
ceftriaxone	sediment							1	28	56	16	
	soil							:	25	38	38	
ciprofloxacin	sediment		88	12						•		
	soil		44	31	25							
gentamicin	sediment				12	24	56	8				
	soil				56	31	6	6				
imipenem	sediment				100							
	soil				94	6						
levofloxacin	sediment			20	64	16						
	soil	13	13	6		69						
lomefloxacin	sediment					32	64	4				
	soil			25			63	13				
piperacillin/tazobacta	sediment								4	68	4	24
m	soil							6	13	25	44	13
piperacillin	sediment							0	4	68	28	15
piperaemin	soil							6	13	13	56	13
tetracycline	sediment							4	96	10		10
	soil								100			
tobramycin	sediment				100							
, i i i i i i i i i i i i i i i i i i i	soil				94			6				
	501				71		1	Ŭ				

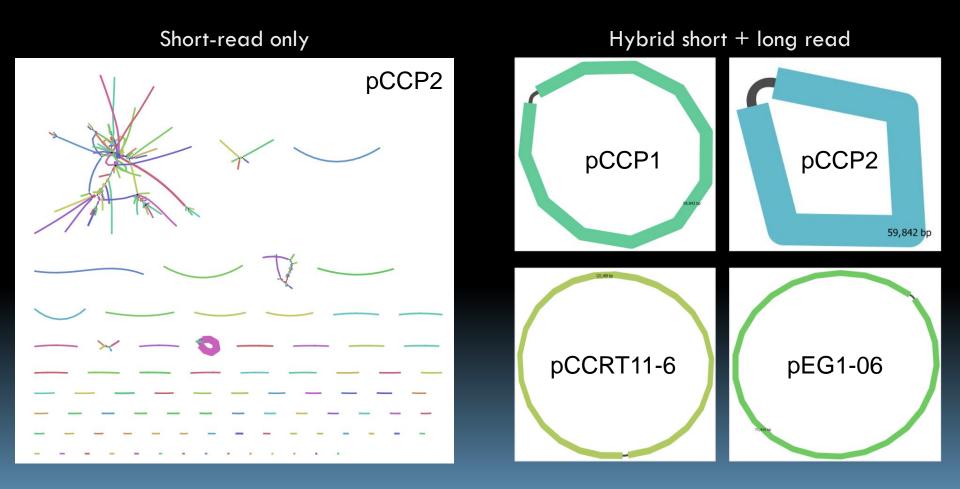
MICs of plasmids captured from litter-amended soil and adjacent stream sediments

Ceftriaxone – 3rd generation Cefoperazone – 3rd gen Cefotaxime – 3rd gen Ceftazadime – 3rd gen Ceftepime – 4th gen

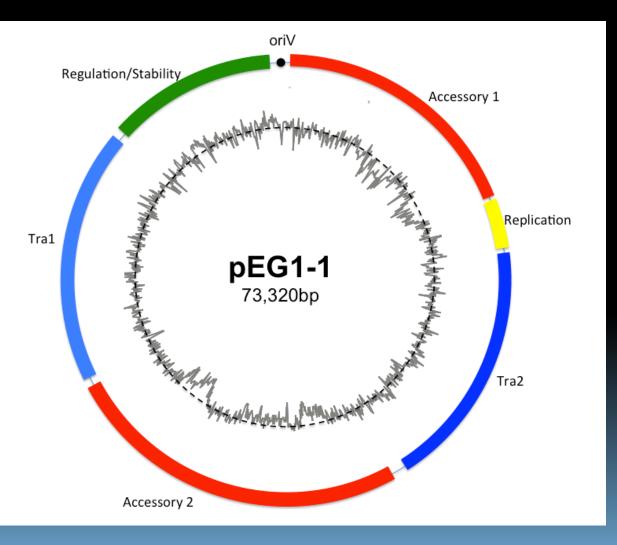
> MIC of recipient strain Resistance breakpoint for *P. aeruginosa*

Susceptibility breakpoint for *P. aeruginosa*

Antibiotic	Plasmid source ^a	Percentage of transconjugants with MIC ($\mu g/mL$) ^b										
	source	0.12	0.25	0.5	1	2	4	8	16	32	64	128
amikacin	sediment						100		1			
	soil						94				6	
aztreonam	sediment									100		
	soil								19	81		
cefepime	sediment						20	60	12	4		
	soil					13	6	13	63	6		_
cefoperazone	sediment							-		24	76	1
	soil								6	13	81	
cefotaxime	sediment								4	52	44	
	soil							1	31		69	
ceftazidime	sediment						40	60				
	soil					25			75			_
ceftriaxone	sediment								28	56	16	1
	soil					_			25	38	38	
ciprofloxacin	sediment		88	12								
	soil		44	31				_				
gentamicin	sediment				12	24	56	8				
	soil				56	31	6	6				
imipenem	sediment				100		:					
	soil				94	6						
levofloxacin	sediment			20	64	16						
	soil	13	13	6		69						
lomefloxacin	sediment					32	64	4				
	soil			25			63	13				
piperacillin/tazobacta m	sediment								4	68	4	24
	soil							6	13	25	44	13
piperacillin	sediment								4	68	28	
	soil							6	13	13	56	13
tetracycline	sediment							4	96		·	
	soil								100			
tobramycin	sediment				100		1					
	soil				94			6				
							1	-				

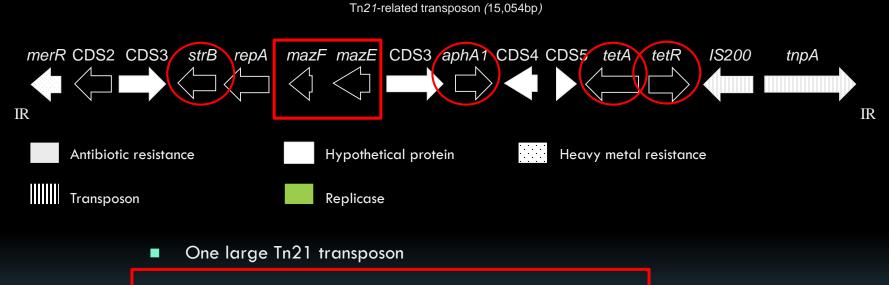

Plasmids captured from streams in the Shenandoah Valley have <u>commonly</u> conferred phenotypic resistance to:

- Tetracycline
- Streptomycin
- Gentamicin*
- Ciprofloxacin
- Lomefloxacin
- Ticarcillin*
- Tobromycin*
- Kanamycin

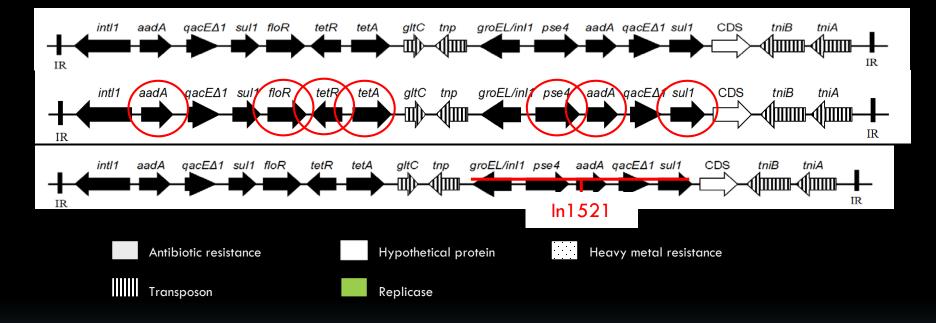

- Aztreonam*
- Piperacillin*
- Piperacillin/Tazobactam*
- Ceftriaxone*
- Cefepime*
- Cefoperazone
- Ceftzadime *
- Cefotaxime*

What is the <u>genetic</u> basis for the phenotypic resistance we see in these resistance plasmids?

BANDAGE GRAPHS OF HYBRID-ASSEMBLED CAPTURED PLASMIDS

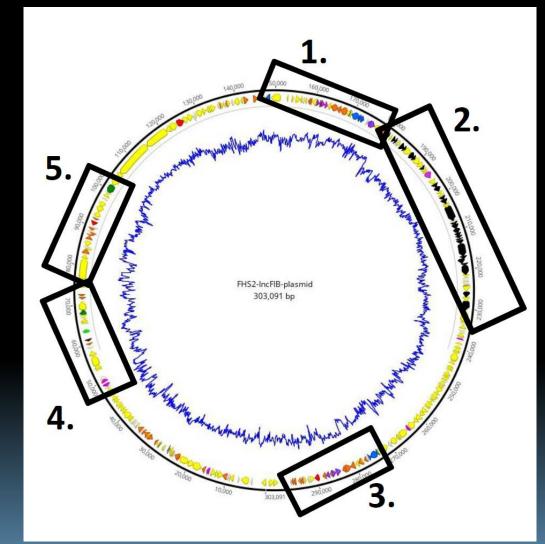


pEG1-1: a multiresistance plasmid captured from uncultivated stream sediment bacteria


- Captured using E. coli
 host
- IncP-1β Plasmid (very broad host range)
- Encodes phenotypic resistance to tetracycline, kanamycin, piperacillin, ticarcillin, tobramycin, piperacillin/tazobactam, and cefepime
- Two potentially mobile accessory modules

Accessory Module 1

mazE/F toxin/antitoxin "plasmid addiction" system


ACCESSORY MODULE 2

- A "complex integron", typically associated with (chromosomal) Salmonella genomic island 1 (SGI1)
- First identified in multidrug resistant Salmonella Typhimurium DT104
- Found on chromosomes or in association with IncA/C plasmids
- In1521 is a new class 1 integron (in1521)

Plasmid pFHS2

- Transmissible 303 kb
 megaplasmid identified in
 Salmonella Infantis FHS 02
- Isolated from sediment of Cooks Creek, near Dayton
 Virginia

Plasmids pick up transposons as they move through the environment

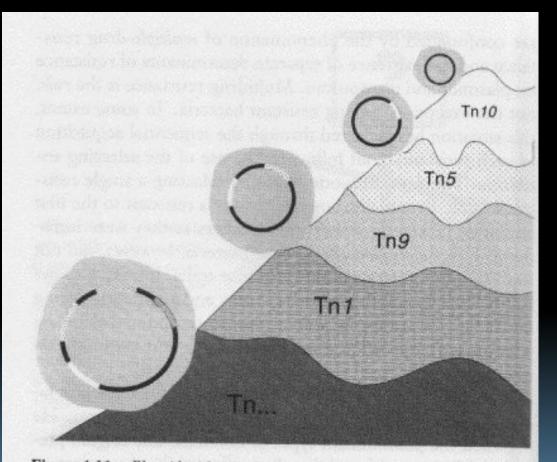
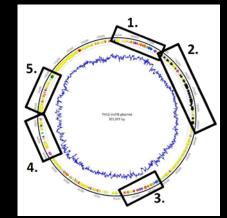
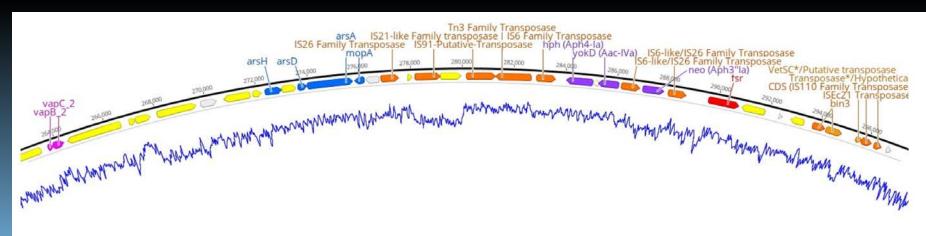
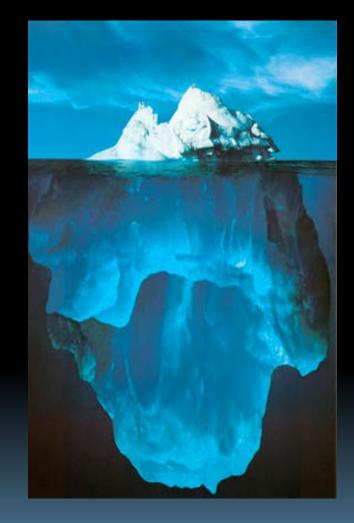



Figure 4.11. Plasmids pick up resistance genes on transposons as they move through the environment. By retaining previous ones and picking up new ones, they increase in size, like a snowball rolling down a bill (Bonnie Marsball, Tufts University School of Medicine).


Levy, S. B. 2002. *The Antibiotic Paradox*. Perseus, Cambridge MA.

Plasmid pFHS2

- 11 predicted AR genes
- 11 predicted heavy metal resistance genes (mercury, arsenic, tellurite, molybdenum)
- Large potential for co-selection (genetic hitch-hiking)
- 4 predicted 'plasmid addiction' systems
- Multiple transposons & IS elements
- Phage-associated virulence gene (gipA), associated with Peyers patch colonization and macrophage survival



Accessory gene region 3

IMPLICATIONS

- Bacterial communities in stream sediments may harbor significant reservoirs of pathogens, as well as resistance, virulence & other genes.
- These genes are often found on mobile genetic elements.
- Animal husbandry carried out on a massive scale may be adding to these reservoirs.
- The ease of recovery of transmissible MDR plasmids suggests that these reservoirs exist, and that plasmids and other MGEs may facilitate gene recombination and spread to and from pathogens.

ACKNOWLEDGEMENTS

Graduate Students

- Jim Brooks
- Erika Gehr
- Kevin Libuit
- Curtis Kapsak
- Noah Greenman

Undergraduates

- Scott Benham
- Ross Haynes
- Spencer Heringa
- Lindsay Trower
- Sophie Jurgensen
- Charles Holmes
- Shahzeb Kahn
- Seana Sears
- Elena Balkanska
- Selena Hise
- Max Maza
- Raechel Davis
- and a host of others!

environmental defense

Special Thanks:

- Dr. Rebecca Bell (FDA – CFSAN)
- Dr. Lauren Turner (Virginia DCLS)
- Dr. Stephen Turner (Signature Science, formerly
 @ UVa Bioinformatics Core)
- Dr. Jonathan Frye (USDA)

CANAAN VALLEY INSTITUTE

ERVING THE MID-ATLANTIC HIGHLANDS SINCE